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GOAL

Classify If an image Is tampered by means of copy-paste, object
removal or splicing mechanisms.
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MOTIVATION

e Number of tampered images available to train a convolutional neural
network iIs small.

e Inpainting and compositing, which are essentially forms of tampering
similar to object removal and splicing, could be used to augment the
data.

o Explore the possibility of performing domain adaptation between the
augmented data as well as the curated data.

APPROACH
TAMPERING DATA AUGMENTATION

e Inpainting and compositing methods are employed.

e Three different augmentation schemes are used: Simple Inpainting,
Semantic Inpainting and Feathering.

e Each of these schemes will help to augment atleast one of copy-
paste, object removal or splicing types of tampering.
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Bappy et al [3] 86.75 75.84
Finetune on generated 87.62 74.75
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