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Abstract—Convolutional Neural Networks have been shown to
be promising for image tampering detection in the recent years.
However, the number of tampered images available to train a
network is still small. This is mainly due to the cumbersomeness
involved in creating lots of tampered images. As a result, the
potential offered by these networks is not completely exploited. In
this work, we propose a simple method to address this problem by
augmenting data using inpainting and compositing schemes. We
consider different forms of inpainting like simple inpainting and
semantic inpainting as well as compositing schemes like feather-
ing in order to augment the data. A domain adaptation technique
is employed to reduce the domain shift between the augmented
data and the data available using proprietary softwares. We
demonstrate that this method of augmentation is effective in
improving the detection accuracies. We present experimental
evaluation on two popular datasets for image tampering detection
to demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Due to the ever growing number of powerful softwares
and algorithms available for the manipulation of images, it
has become relatively easy to tamper an image for unethical
and illegal purposes. As a result, research in image tampering
detection has been receiving considerable interest [1][2][3][4].
Recently, Convolutional Neural Networks (CNN) have emerged
as a popular choice for image tampering detection due to
their success in image recognition tasks like object classifi-
cation [5][6] as well as their ability to directly learn from data
without involving any complicated hand-crafting [3][2][7].
However, the advantages offered by CNNs are not completely
exploited for detection of tampering in images. The major
setback for efficient usage of CNN is the fact that the amount of
training data available in terms of number of tampered images
is still very small. The biggest dataset for image tampering
detection is the CASIA TIDE V2 [8] dataset with around 5,000
tampered images. However, this is still small for a large CNN
with potentially millions of learnable parameters. In order
to circumvent this problem, existing methods either resort to
smaller architectures [2] or employ networks whose layers are
derived from existing filter based approaches [7][9]. Most of
these methods use patches derived from full images in order
to augment the dataset. While this is a plausible approach, the
amount of data available even after this augmentation process
might not be sufficient. In addition, sampling patches from
overlapping regions can lead to less variance in the input data,
and thus the resulting model might end up picking cues from
color and texture which might not be the most relevant.

Fig. 1: Significant quantitative gain is observed using the proposed
approach on two of the standard image tampering detection datasets
- IEEE Forensics [10] and CASIA TIDE V2 [8].

In this work, we propose a simple yet effective data
augmentation method specific to image tampering detection
in order to alleviate the aforementioned problems. We posit
that an inpainted image or a composited image is essentially
a tampered image. This can be validated by a simple fact
that they share the same underlying principles, albeit with
a different motivation. For example, object removal form of
tampering essentially involves replacing the pixels of an object
of interest with pixels which blend with the background. In-
painting adopts the same principle. This brings to forefront the
following question: Is it possible to leverage them for detecting
tampered images? The answer to this question is not obvious
and has not been explored yet in the literature. We demonstrate
that through a systematic process of generating the inpainted
and composited images, the answer is an emphatic yes. This
is the primordial contribution of this work. Although it is
to be expected that the tamperings generated by inpainting
and compositing might be slightly different from the ones
produced using proprietary softwares, employing a simple
domain adaptation method of minimizing the Maximum Mean
Discrepancy (MMD) [12] between these two forms of data can
help to learn an efficient representation of tamperings. Our
contributions are:

1) We propose inpainting and compositing as data augmen-
tation strategies for image tampering detection in a CNN



Fig. 2: Examples from each of the tampering schemes involved in augmenting the data. The first row corresponds to the original images and
the second row corresponds to inpainted or composited images. The first two columns correspond to augmentation using simple inpainting,
the next two columns correspond to augmentation using semantic inpainting and the last two columns correspond to feathering. The images
are taken from COCO [11] dataset.

framework which helps improve the image tampering
detection.

2) The proposed approach is an end-to-end CNN framework
which does not involve any hand-crafted filters.

3) Extensive experimental evaluation on two benchmark
datasets demonstrates that the proposed data augmen-
tation method when combined with a state-of-the-art
domain adaptation method surpasses the state-of-the-art
for image tampering detection.

The rest of the paper is organized as follows. In Section II,
we present a brief overview of the related work. Section III
describes the proposed approach in detail. Section IV describes
the experimental evaluation and results followed by Section V,
which provides the conclusion.

II. RELATED WORK

Deep learning, especially in the form of Convolutional
Neural Networks has been used in the literature for image
tampering detection in various forms. Chen et al. [7] employ
CNN for median filtering based image forensics. The first layer
is a fixed layer which computes the median residuals of the
input image. Bayar et al. [9] proposed a new convolutional
layer consisting of filters which produce a prediction error
of the center pixel with respect to its neighborhood. In [13],
the weights of the first layer are initialized with the weights
of spatial rich model [14] high pass filter residuals. The
experiments demonstrate that this method of initialization is
superior to the standard deep learning initialization methods
like Xavier [15]. Although the results of these methods are
encouraging, they still rely on hand-crafted filters for learning
representations of tamperings. Our network architecture is
similar to these approaches. However, our approach does not
need any hand-crafted filters and is entirely end-to-end.

Bondi et al. [16] employ CNN to extract camera model
features of different patches of an image. A suitable clustering
algorithm is used to aggregate patches which have similar
camera model features. An image is labeled as pristine if all
of its patches belong to the same cluster, else it is classified

as tampered. Rota et al. [2] employ a CNN network which
consists of two convolutional layers followed by two fully
connected layers. The authors extend their detection frame-
work to localization by employing an edge detector to mine
candidate tampered regions. Recently, Bappy et al. [3] employ
a combination of convolutional and Long-Short Term Memory
(LSTM) layers to detect as well as segment the tampered
regions. The above methods rely on patch based sampling for
training, as the number of tampered images available is less.
In our approach, we augment the data using inpainting and
compositing to address the problem.

Our work is focused on effective data augmentation strate-
gies for data-hungry convolutional neural networks. Although
this has not been explored in the context of image tampering
detection, there exist multiple works which have attempted
to address the data scarcity problem for object classification
and other recognition tasks. Chen et al. [17] augment the
data for describing people based on their clothing in uncon-
strained scenario by obtaining images from online shopping
sites which are taken in a constrained environment. The
authors employ a two-stream CNN network for the task.
A domain adaptation method is developed to bridge the
domain disrepancy between the constrained online shopping
data and the unconstrained images containing people. Our
approach follows similar lines, although in the context of
image tampering detection. However, unlike online shopping
sites, tampered image data is relatively tougher to augment
as it does not involve any semantics nor any other observable
cues thereby. Dwibedi et al. [18] employ splicing operation
of object instances onto random backgrounds to synthesize
training examples for instance detection. Similar synthesis and
augmentation approaches coupled with adaptation has been
proposed for various tasks like viewpoint refinement [19]
and semantic segmentation [20]. However, this paradigm of
augmenting and then performing adaptation is not explored
for the task of image tampering detection.



Fig. 3: An overview of the network used for learning artefacts
of tampering. The connection between layers using a dotted line
indicates that the corresponding layers share parameters. The final
three layers are fully connected layers.

III. PROPOSED METHOD

Availability of large datasets like ImageNet [21] was one
of the major factors for the success of convolutional neural
networks for recognition tasks in computer vision [5]. Though
image tampering detection is essentially a two class classifi-
cation task, the artefacts are subtle and hence are difficult to
model. As a result, large amount of data especially in terms
of number of tampered images is required to train a deeper
network. However, manually obtaining a lot of tampered
images is cumbersome. Therefore we seek alternate forms
of generating tampered images which are very similar to the
ones produced using proprietary softwares and which contain
similar artefacts, thus helping in augmenting the data.

A. Augmenting Data using Inpainting and Compositing

In this work, we focus on the most common forms of
tampering - instance removal, copy and paste and splicing.
These forms of tampering can be attributed to two different
operations: 1) Inpainting [22] for instance removal and 2)
Compositing [23] for copy and paste as well as splicing.
With this insight, we systematically generate inpainted images
and composites which can be easily employed to create
large number of augmented tampered images. We consider
two schemes of inpainting - simple inpainting and semantic
inpainting. Apart from inpainting, we also perform feathering
[23], a form of image composition. We describe in detail the
approach involved in each of these schemes below.

1) Simple Inpainting: In this scheme, pixels belonging to
a small region of the image are set to zero. A com-
plete image is obtained using inpainting algorithms like
[22][24]. This forms a tampered image with inpainting
providing artefacts of tampering. It is also made sure
that the randomly selected region does not contain more
than 30% of the total number of pixels in the image.
This ensures that the inpainting algorithm used to get
the complete image from the tampered region provides
a good performance.

2) Semantic Inpainting: Here, instead of a small region,
an object or other semantic concept is chosen to inpaint.
This requires that the ground truth mask or bounding
box for the object or semantic concept is available for
tampering. Images from MS COCO dataset [11] which
come along with segmentation masks are employed for
inpainting. If multiple semantic concepts are available
with their corresponding segmentation masks in a single
image, one of them is chosen at random to inpaint.
This helps to augment the ‘object removal’ form of
tampering.

3) Feathering: In this setting, instead of inpainting the
selected object of interest, we feather (equivalent to
a splicing operation) it onto another image which
mainly contains background region. Let F be an image
containing the foreground object/semantic concept of
interest and α be the mask of the object. Given a
background image B, the feathering is carried out as
I = α · F + (1− α) ·B. This feathering is similar to
the ones described in [23][25]. The background image
is resized to the size of foreground image in order
to feather the image. We use the foreground images
provided by [25]. The background image belongs to
images from COCO [11] database. A poisson blending
operation [26] is also performed in order to remove any
visually distinct cues at the boundary regions [18].

For all the above schemes, images are sampled from MS COCO
dataset [11] as this dataset has a good balance of different
objects under different scenes and lighting conditions. All the
above three schemes present a fast and straightforward way
to generate the tamperings. Example of each type of these
tamperings is shown in Figure 2. It is to be noted here that
the algorithmically generated tamperings may not showcase
image-level realism, i.e the generated tamperings may not be
realistic for some images. We employ a patch based approach
for training the network, and hence global level coherency
in terms of realism is not a necessity. Moreover, as we are
interested in the local artefacts that are generated and not
on the extent of realism, these images still serve as good
source of augmenting the training data. We generate about
52,000 images using the tampering methods as described
above. Along with 50,000 other pristine images drawn from
the same dataset, the size of the algorithmically generated data
is about 102,000 images.

B. Domain Adaptation

Although the generated data provides ample number of
training samples, the cues offered by the artefacts produced
using this approach may not be exactly similar to the cues
offered by the artefacts produced manually using tampering
softwares. In addition, the algorithm employed to perform
tampering using a tampering software may be different from
the ones used for augmenting the data. Hence, these tampered
images might contain slightly different artefacts. Therefore,
the generated inpainted data and the one obtained manually
potentially belong to different domains. It becomes important



to take into account this domain discrepancy. We perform
domain adaptation between these two forms of data using
a Maximum Mean Discrepancy (MMD) measure [12]. We
describe briefly the approach involved and the architecture
used.

The algorithmically generated data for augmentation forms
the source data Xs = {xis}

Ns
i=1 with abundant labelled training

examples. The images from one of the datasets like CASIA
TIDE V2 [8] or IEEE Forensics [10] forms the target domain
data Xt = {xit}

Nt
i=1 which has less number of training samples.

The setup is a supervised domain adaptation task in which la-
bels for both source domain and the target domain is available.
The overview of the network employed is given in Figure 3.
The network is a siamese network with a separate classification
head for the two forms of data. One branch of the network
takes input from the source domain while the other takes the
input from the target domain. It has five convolutional layers
interleaved by max pooling and ReLU activation, similar
to the architecture of [5]. The size of the input is image
patches of size 64 × 64 × 3. The initial five convolutional
layers and the first fully connected layer of size 512 learn
a shared representation between the source and the target
domains. Each domain is then passed through an adaptation
layer which is a fully connected layer of size 256. This follows
closely from [12]. A Maximum Mean Discrepancy (MMD)
loss is performed on the output of this layer in order to
bring the embeddings of these two domains closer. Further,
the output of the adaptation layer is also passed through a
fully connnected layer followed by a softmax activation. The
final fully connected layer serves for classification. All the
layers use ReLU activation except for the last layer, which
uses softmax.

Let the set of image patches obtained from source domain
data Xs be X̂s = {x̂is}

N̂s
i=1 and the target domain Xt be X̂t =

{x̂it}
N̂t
i=1. MMD loss is defined as :

LM = min

∣∣∣∣∣
∣∣∣∣∣ 1

|X̂s|

∑
x̂s∈X̂s

Φ(x̂s) − 1

|X̂t|

∑
x̂t∈X̂t

Φ(x̂t)

∣∣∣∣∣
∣∣∣∣∣
2

2

(1)

where Φ(x̂s) is the output of the source adaptation layer on
the input source image patch x̂s and Φ(x̂t) is the output of
the target adaptation layer on the input target image patch x̂t.

Along with the above MMD loss, normal cross entropy
classification loss on the output of the softmax layer from each
head is also used to classify the source and target samples.

Lc = min − 1

N

N∑
i=1

2∑
j=1

1(yi = j) log(pij) (2)

where yi ∈ {0, 1} is the label corresponding to the patch
sample i and 1(·) is an indicator function. pij is the probability
that a patch i belongs to class j as output by the final softmax
layer of the network. The overall loss is:

L = Lct + λ1Lcs + λ2LM (3)

Lct and Lcs are independent classification losses (Equation
2) on the target domain and the source domain input data

respectively. λ1 and λ2 are the hyper-parameters. Here, λ2
also controls the amount of confusion to be created between
the domains. The network is trained by employing a stochastic
gradient descent optimization procedure. Once the network is
trained, a forward pass can be made through the target domain
branch of the network to make the inference.

IV. EXPERIMENTS

A. Datasets and Experimental settings

The proposed approach is tested on two standard datasets
available for image tampering detection: IEEE Forensics Chal-
lenge [10] and CASIA TIDE V2 [8]. The manipulation examples
are usually generated by copy-clone, splicing and removal
techniques.

IEEE Forensics [10] contains 1050 pristine images and
451 tampered images. For this dataset, we have used only
the publicly available training set. CASIA [8] contains 7491
pristine and 5123 tampered images. For CASIA dataset, it was
observed in [27] that the tampered images were saved twice in
jpeg format, in comparison with that of pristine images, which
were saved only once. This resulted in the network developing
bias towards the artefacts of double-jpeg compression rather
than that of tampering. In order to alleviate this effect, we
employ the same procedure as performed in [27]. Since there
is no common available split for both the datasets, we divide
the whole data into three random subsets - training (75%),
validation (10%) and testing (15%). The split is made such that
every split has almost equal number of copy-clone, splicing
and removal tamperings among all the images of that split.

Patches of images of size 64× 64× 3 are used to train the
network. During training, the patches are sampled randomly
from each image. If the selected image sample is a pristine
image, a randomly sampled patch of the required size is
chosen. If the image selected is tampered, then a patch is
randomly sampled such that at least 10% of the pixels of the
patch are tampered. We make use of the tampering ground
truth mask to sample in this manner. For CASIA dataset,
soft ground truth mask is generated as described in [2]. This
random sampling is done for every mini-batch independently.
During testing, patches are exhaustively extracted from each
test image. Each of these patches are forward-passed through
the network and patch-level classification is made. The image
is classified as tampered if at least k patches are classified as
tampered by the network. Here k is a hyper-parameter to be
chosen on the validation data.

Stochastic gradient descent with momentum is used for
optimizing the network parameters with an initial learning
rate of 0.01 and weight decay factor of 0.0005. The value
of momentum is set to 0.9. For classification, accuracy in
percentage is used to report the results. In addition, precision,
recall and F-score for tampering detection is also reported
for the domain adaptation setting. Precision is defined as the
ratio of number of true positives by the total number of true
positives and false positives. Recall is the ratio of number of
true positives by the total number of true positives and false



IEEE Forensics CASIA
Rota et al. [2] 83.24 72.29
Bappy et al. [3] 86.75 75.84
Train from scratch 82.25 71.61
Finetune on generated data 87.62 74.75
Generated data + MMD 89.12 77.43

TABLE I: Results of image tampering detection (accuracy in
%) on the two datasets using different methods. The results
for [3] and [2] are obtained on our setting after reproducing
the result on the original setting of the paper.

Precision Recall F-score
IEEE Forensics 0.944 0.766 0.846
CASIA 0.814 0.704 0.755

TABLE II: Precision, Recall and F-score on different datasets
on the domain adaptation setting.

negatives. F-score is the harmonic mean between precision and
recall.

In order to better understand the source of performance
of the proposed approach, various control experiments (base-
lines) are also performed. The various control setups can be
described as follows:

• Train from scratch: The whole network is trained from
scratch without using the inpainted and composited data.
This denotes the performance that the network can
achieve when trained without using algorithmically gen-
erated data.

• Finetune on generated data: The network is trained after
initializing with weights trained on inpainted and com-
posited data.

For the baselines, the architecture which corresponds to one
of the streams of the siamese network in Figure 3 is used.

B. Results

The results for image tampering detection are tabulated
in Table I. It can be seen that training from scratch leads
to comparatively lower results. This might indicate that the
amount of data required to train a large network from scratch
is not sufficient with just the data from the datasets available
publicly. This hypothesis is further supported by the third
baseline which improves the detection rates on all the datasets
with respect to training from scratch. It also indicates that
the network trained on the algorithmically generated data is
well transferable to image tampering detection. On performing
domain adaptation, it was observed that there was a non-trivial
increase in accuracy on both the datasets. This indicates that
the algorithmically generated tamperings and the tamperings
obtained using proprietary softwares have slightly different
distributions. However, on performing MMD, the domain shift
problem is alleviated to a certain extent.

C. Ablation Studies

In order to better understand the degree of effect of per-
formance of the generated data, we vary the number of
algorithmically generated images used for augmentation and

Fig. 4: Plot of number of tampered images in the augmented data
against detection accuracy in %.

Fig. 5: Plot indicating the performance of the proposed approach on
tampering detection due to various schemes of data augmentation.
The first bar (sky blue) corresponds to performance of the algorithm
when the augmented data does not consist of simple inpainting type
of tampering. The second bar (blue) corresponds to the performance
of the algorithm when the augmented data does not consist of
semantic inpainting type of tampering. The third bar (yellow) denotes
the performance of the algorithm when the augmented data does
not consist of feathering type of tampering. The fourth bar (green)
indicates the performance due to all the three types of schemes.

observe the change in performance. The corresponding graph
is shown in Figure 4. It is made sure that the number of
tampered images and the pristine images of the augmented
data is maintained at a ratio of 1:1. It is also made sure
that for generating tampered images, the number of images
generated using each of the schemes are nearly equal. It
can be seen that as the number of tampered images used
for augmentation goes up, the detection accuracy also grows,
indicating that augmenting data is beneficial for learning good
representations of tamperings. As we augment more data, the
gain in performance is higher for IEEE dataset than that for
CASIA. This is expected as the number of samples in IEEE is
much lesser compared to the CASIA.

In addition, we also attempt to isolate the performance
due to each of the augmentation schemes described in Sec-



tion III-A. Figure 5 presents the results on various settings.
For each setting, the total number of tampered images is
equal to the one used for the proposed approach, i.e around
50,000. It can be seen that drop in accuracy is highest when
feathering form of tampering is excluded. This indicates that
feathering contributes the most among all the schemes. The
other schemes offer varying levels of gain in performance
on the two datasets. Note that the performance of each of
these setups is still higher than the performance when the
network is trained from scratch (Table I) indicating the positive
contribution of each of the proposed schemes.

D. Comparison with the state-of-the-art

In order to demonstrate the competitiveness of the proposed
approach, we provide comparison with the state-of-the-art. We
implement the approach of [3] and [2] as they have been shown
to provide state-of-the-art for image tampering detection. For
[3], we verify that our reproduced results are close to the
reported result for the task of patch classification accuracy
on the IEEE dataset. Similarly, we reproduce the result of [2]
on the CASIA TIDE V2 dataset. We test the approaches of both
[3] and [2] on our setting as described earlier. The results
are tabulated in Table I. The proposed approach achieves
superior accuracy, albeit being simpler in architecture. This
demonstrates the efficacy of the data augmentation method and
the importance of more data for image tampering detection.
In addition, we would also like to point that the proposed
data augmentation method is relevant in any other CNN based
approach. Therefore, the proposed augmentation method is
also potentially beneficial in the setting of [3] as well as [2],
wherein the detection accuracies can be even higher.

V. CONCLUSION

In this work, we present an efficient data augmentation
method for image tampering detection. We employ inpainting
and compositing schemes to algorithmically create a dataset
which contains artefacts similar to the ones produced using
proprietary softwares. We consider three schemes for augment-
ing - simple inpainting, semantic inpainting and feathering in
order to generate the data. In combination with a state-of-
the-art domain adaptation method, we demonstrate that the
proposed method of augmentation is effective in terms of
increasing the tampering detection accuracies on two standard
datasets. This experimental result opens up the possibility of
training an end-to-end model using a generative adversarial
network [28] wherein the generator produces the inpainted
data which can augment the smaller datasets produced by
proprietary softwares, while jointly training a discriminator
which can detect tampered images. This line of work forms a
part of our future work. Augmentation of data to learn efficient
representations of tamperings for tamperings apart from copy-
paste, removal and splicing is also an interesting and important
direction in order to develop models that can detect tampered
images in the wild.
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[26] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” TOG,
2003.

[27] P. Sutthiwan, Y. Q. Shi, H. Zhao, T.-T. Ng, and W. Su, “Markovian
rake transform for digital image tampering detection,” in Transactions
on data hiding and multimedia security VI, 2011.

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NIPS, 2014.

http://forensics.idealtest.org/casiav2/
http://ifc.recod.ic.unicamp.br/fc. website/index.py
http://ifc.recod.ic.unicamp.br/fc. website/index.py

