Preserving Semantic Relations for Zero-Shot Learning

Yashas Annadani
NITK
yashas.annadani@gmail.com
Soma Biswas
Indian Institute of Science
somabiswas@iisc.ac.in

Overview

Goal
Classify samples belonging to unseen categories.

Motivation
Proper choice of embedding space is essential.

Direction of Mapping
Problem

Visual to Semantic
Hubness

Semantic to Visual
Semantic structure not preserved!

Contribution
We propose to devise objective functions which aim to learn a similarity metric and preserve semantic structure in the visual embedding space.

Semantic Relations

Given class embeddings \(y_m\) and \(y_n\), semantic relation between them is defined as:

- Identical if \(s(y_m, y_n) = 1\)
- Semantically similar if \(\tau \leq s(y_m, y_n) < 1\)
- Semantically dissimilar if \(s(y_m, y_n) < \tau\)

Technical Details

Objective for identical and dissimilar classes

\[
\min_{\theta_f} -s(f(y_r; \theta_f), x_i) + (r - \delta_{x_I}) \cdot s(f(y_r; \theta_f), x_k)
\]

Objective for similar classes

\[
\min_{\theta_f} [r - s(f(y_r, \theta_f), x_j)]_+ + [s(f(y_r, \theta_f), x_j) - \delta_{x_J}]_+ +
\]

Reconstruction Objective

\[
\min_{\theta_f, \theta_e} ||y_r - \hat{y}_r||^2
\]

text continues...