

Overview

Goal

Classify samples belonging to unseen categories.

Motivation

Proper choice of embedding space is essential.

Direction of Mapping	Problem
Visual to Semantic	Hubness
Semantic to Visual	Semantic structure not preserved!

Contribution

We propose to devise objective functions which aim to learn a similarity metric and preserve semantic structure in the visual embedding space.

Semantic Relations

Given class embeddings ym and yn, semantic relation between them is defined as:

- Identical if $s(\mathbf{y_m}, \mathbf{y_n}) = 1$
- **Semantically similar** if $\tau \leq s(\mathbf{y_m}, \mathbf{y_n}) < 1$
- Semantically dissimilar if $s(\mathbf{y_m}, \mathbf{y_n}) < \tau$

Preserving Semantic Relations for Zero-Shot Learning Yashas Annadani Soma Biswas Indian Institute of Science NITK somabiswas@iisc.ac.in

yashas.annadani@gmail.com

Technical Details

- Consider a quadruplet $(\mathbf{y_r}, \mathbf{x_i}, \mathbf{x_j}, \mathbf{x_k})$ wherein $\mathbf{y_r}$ is a reference embedding.
- (x_i, x_j, x_k) are such that corresponding (y_i, y_j, y_k) obey relations in the definition wrt $\mathbf{y_r}$.
- Let $f(\mathbf{y}; \theta_f)$ be the mapping function to be learnt by the encoder. The objective functions to preserve each relation are as follows:

Objective for identical and dissimilar classes

 $\min_{\theta_f} -s \big(f(\mathbf{y}_{\mathbf{r}}; \theta_f), \, \mathbf{x}_{\mathbf{i}} \big) + \big(\tau - \delta_{kr} \big) \cdot s \big(f(\mathbf{y}_{\mathbf{r}}; \theta_f), \, \mathbf{x}_{\mathbf{k}} \big)$

Objective for similar classes

$$\min_{\boldsymbol{\theta}_{f}} \left[\boldsymbol{\tau} - s \left(f(\mathbf{y}_{\mathbf{r}}; \boldsymbol{\theta}_{f}), \mathbf{x}_{\mathbf{j}} \right) \right]_{+} + \left[s \left(f(\mathbf{y}_{\mathbf{r}}; \boldsymbol{\theta}_{f}), \mathbf{x}_{\mathbf{j}} \right) \right]_{+} \right] \\ \left[z \right]_{+} = \max(0, z)$$

Reconstruction Objective

$$\min_{\theta_f, \theta_g} ||\mathbf{y_r} - \mathbf{\hat{y}_r}||_2^2$$

Results

Reconstructed class

Reconstruction

 $(\mathbf{x_j}) - \delta_{jr}|_+$

Results on Imagenet

		Conventional Zero-Shot Learning			Generaliz Zero-Sho Learning	
		2H	3H	All	2H	3H
Тор - 1	SYNC	9.1	2.6	0.9	0.3	0.1
	Proposed	9.4	2.8	1.0	1.2	0.8
Тор - 5	SYNC	25.9	4.9	2.5	8.7	3.8
	Proposed	26.3	4.8	2.7	11.2	4.9

Approximate Semantic Inference

classes without class embeddings like Word2Vec.

Embedding Space Visualization

Cosine similarity scores as output by the network to samples belonging to