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Abstract. Cross-modal retrieval using hashing techniques is gaining increas-
ing importance due to its efficient storage, scalability and fast query processing
speeds. In this work, we address a related and relatively unexplored problem:
given a set of cross-modal data with their already learned hash codes, can we
increase the number of bits to better represent the data without relearning every-
thing? This scenario is especially important when the number of tags describing
the data increases, necessitating longer hash codes for better representation. To
tackle this problem, we propose a novel approach called GrowBit, which incre-
mentally learns the bits in the hash code and thus utilizes all the bits learned so far.
We develop a two-stage approach for learning the hash codes and hash functions
separately, utilizing a recent formulation which decouples over the bits so that it
can incorporate the incremental approach. Experiments on MirFlickr, IAPR-TC-
12 and NUS-WIDE datasets show the usefulness of the proposed approach.

Keywords: Cross-modal retrieval · Hashing · Incremental Learning.

1 Introduction

Due to the availability of large amounts of multimedia data, cross-modal retrieval has
become an active area of research [5], [8], [15]. For example, given an image query, it is
often required to retrieve relevant textual documents from the database. Hashing tech-
niques designed to generate good binary encodings for capturing the semantic relations
between the data have gained popularity because of their impressive retrieval results,
low-storage costs and efficient retrieval. Hashing techniques for both unsupervised [36],
[23], [5], [35] and supervised settings [1], [13], [36], [31] have been proposed.

Multimedia data is often described using multiple tags (or labels or attributes) which
gives a richer description of the data. Some illustrative examples of cross-modal mul-
timedia data are shown in Figure 1. Since for training, the data is usually manually
annotated or requires manual supervision, getting all the tags for the data at once might
not be feasible due to limited human resources. Let us consider that the training data
{Xtr, Ytr} has been annotated with Ltr tags, using which we learn a hash bit represen-
tation of k1 bits. Gradually, with more human resources, more annotations of the data
become available. Let us assume that now a total of L̂tr tags become available. Con-
sider an example, where, an existing dress catalogue which has been stored based on
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Fig. 1. Some illustrative image-text data pairs from the three datasets - MirFlickr [10] (left), NUS-
WIDE [3] (middle) and IAPR TC-12 [6] (right).

their category (like shirt, top) may now be annotated with finer details like sleeve length,
etc., which requires a better representation using more bits so that it can be correctly
retrieved using a textual description. Most of the current algorithms require relearning
the entire set of hash codes and hash functions. In this work, we propose a novel in-
cremental hashing approach termed GrowBit, which can efficiently utilize the already
learned hash codes, and incrementally learn the additional bits, without compromising
on the retrieval performance.

Inspired by the success of the two-stage hashing approaches [20], [15], [14], [27],
we design our GrowBit as a two-stage approach, in which the additional hash bits are
learned in the first stage and the new hash functions are learned in the second stage
based on these additional hash bits. More specifically, we build upon the formulation
of a recent state-of-the-art technique [20] which decouples over the bit representation
and allows us to learn the bits in an incremental manner. In the first stage, in order to
utilize the already learned hash codes, we compute the additional bits such that they
learn the semantic information not captured by the initially learned bits. We utilize a
deep neural network to learn the respective hash functions in the second stage. To learn
the hash functions for the newly learned additional bits, we efficiently re-utilize parts
of the network which was previously trained and modify it accordingly. This has an
added advantage of significantly reducing the training time as compared to completely
retraining the model. In addition, we propose a novel unification scheme to generate
common hash codes using complementary information from multiple modalities. We
perform an exhaustive evaluation on three standard cross-modal datasets, namely Mir-
Flickr [10], IAPR-TC-12 [6] and NUS-WIDE [3] and show that the proposed algorithm
can efficiently learn the hash codes under different scenarios. The contributions of this
work are as follows:

1. We propose a novel incremental hashing approach GrowBit, which can seamlessly
integrate the increasing tags in an incremental fashion, while utilizing the already
learned hash code representations. To the best of our knowledge, this is the first
work on incremental hashing in a cross-modal setting.

2. We also propose a unification strategy to generate common hash codes for repre-
sentation.
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3. The proposed approach results in a significant decrease in the number of new pa-
rameters to be trained in the second stage without compromising much on the re-
trieval performance.

2 Related Work

For cross-modal retrieval, algorithms to learn binary embeddings have been developed
using both unsupervised and supervised techniques. Unsupervised approaches like [36],
[23], [5], [35] uses the criterion of inter and intra affinity preservation for design of the
binary latent embedding space. The work in CMFH [5] uses matrix factorization to
learn a unified hash code. A recent method, inspired from dictionary learning, called
quantization, has been proposed in [26], [18], [34] and shows good promise in retrieval
performance.

Supervised approaches use label information to learn effective and more discrimina-
tive binary embedding like CMSSH [1] and CVH [13]. Incorporating label information
in a matrix factorization based approach is proposed in [19]. In addition, the work in
[19] is capable of handling large amounts of data seamlessly. SePH [15] converts the
label information into probability distribution and uses the criterion of low Kullback-
Leibler divergence to learn the bits. It also uses a unification stage which further boosts
the retrieval performance. A generalized method to handle both paired and unpaired
data in cross-modal settings with unification has been proposed in [20]. In [17], in the
learning phase, each bit of the code can be sequentially learned with a discrete opti-
mization scheme that jointly minimizes the empirical loss based on a boosting strategy.
In a bitwise manner, hash functions are then learned for each modality, mapping the
corresponding representations into unified hash codes [17]. The discriminative capa-
bility of the labels has been used to learn the hash code and hash function in [29].
Furthermore, care has been taken to suitably design constraints for the objective func-
tion to reduce the quantization error. Deep learning techniques for cross-modal hashing
has been developed in [11]. The deep learning models [11] have shown major improve-
ments whenever end-to-end training network with non-linear hash functions have been
used. The semantic structure of the multi-modal data has been effectively captured by a
deep generative framework in [32].

The problem of online hashing [28], [7] studies models which can deal with new
incoming data while retaining important information learned from all previous data.
This work considers the problem of adapting an already learned model to incorporate
the ever-expanding set of tags (or attributes or descriptions) of data samples whereas, in
an online setting, the incoming data is usually spread across the same set of categories
as the previously available examples. Sequential learning of hash codes have been pro-
posed in the works of [31], [25] where hash functions are learned incrementally to
correct the errors made by the previous bits sequentially. However, those methods [25],
[31] uses linear transformations to learn hash functions which usually gives poor re-
trieval performance as compared to non-linear based methods.

In this work, for developing an incremental hashing approach, we draw inspiration
from the recent two-stage approaches [14], [27], [15]. Instead of learning the optimal
hash codes and mapping functions in a joint optimization framework, the two-stage
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Fig. 2. An illustration of the proposed approach.

approaches first learn the hash codes followed by learning the hash functions, which
often lead to simpler formulations. A schematic of the proposed algorithm is shown
in Figure 2. Here, the affinity information (S) encoded in the labels is decomposed
to generate the hash codes and a deep neural network (DNN) is used to learn the hash
functions. A change in the affinities (Ŝ, provided by the new tags highlighted in red) can
be captured by learning the extended hash codes. The corresponding hash functions can
then be learned by reusing parts of the previous DNN resulting in significant savings in
computation and time without adversely affecting the retrieval performance. The work
in [2] came to our notice recently and we believe that both the works help to advance the
state-of-the-art in hashing. The main differences with GrowBit (vs [2]) are - (1) usage of
standard hamming distance (weighted hamming metric) (2) ability to learn extendable
hash bits (3) a novel unification scheme for cross-modal retrieval and (4) use of mean
square loss (hinge loss) to learn the hash functions.

3 Proposed Approach

Problem Definition and Notation: Let the training data for the two modalities be de-
noted asXtr ∈ RN×dx and Ytr ∈ RN×dy , whereN is the number of training examples
and dx, dy are the dimensionality of the data (in general dx 6= dy). Suppose, the initial
set of tags available is denoted as Ltr ∈ [0, 1]N×a, where a is the total number of tags
and (0/1) denotes the (absence/presence) of the individual tag. The already learned
hash code representations for Xtr and Ytr are denoted as Hx ∈ [−1, 1]N×k1 and Hy ∈
[−1, 1]N×k1 , where k1 is the number of bits in the hash codes. Let L̂tr ∈ [0, 1]N×â

denote the new set of tags, where â denotes the increased set of tags. As a result of
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more number of tags, the data has richer representation. We would like to represent this
data with a richer representation using hash codes with more number of bits (say k2),
which should result in better cross-modal retrieval. Even if the number of tags remain
the same, we may want to increase the number of bits to better represent the data for im-
proved retrieval performance. One option is to learn all the k2 bits from scratch. In this
work, we explore whether we can utilize the already learned k1 bits, and only learn the
additional (k2 − k1) bits, such that they capture the semantic relation between the data
not captured by the initial bits. Since we are not relearning everything, there is signifi-
cant savings in computation. In the second stage, we utilize deep learning architectures
in a block-wise fashion to learn the hash functions for the additional hash bits.

In this work, X represents a matrix, xi∗, x∗j represents its ith row, jth column
and xij represents its (i, j)th element. ‖·‖F denotes the Frobenius norm: ‖X‖2F =
Tr(XTX). The operation x∗ij = Proj[−1,1]xij can be defined as x∗ij = {−1, xij , 1};
if, {xij < −1, xij ∈ [−1, 1], xij > 1} respectively. The sign operation is defined as
sign(xij) = 1 if xij ≥ 0, and = −1 otherwise. Proj and sign applied to vector and
matrix respectively are done point-wise.

Motivation and Background: One way to design an incremental hash code learn-
ing framework is to utilize a formulation which decouples over the variables (bits) to be
learned. In literature, such formulation can be found in [20], [33], [4], [38], which relate
the similarity measure such that it can easily decouple over the bits. Here, the similarity
between the ith and jth samples of the two modalities are measured using inner product
of the k1 bits i.e., sij = hxi∗

Thyj∗, which is equivalent to sij =
∑k1
k=1 h

x
ikh

y
jk, i.e. the

objective remains decoupled over the bit dimension. Similarly, the new similarity ŝij
can be expressed in terms of the expanded set of k2 bits and can also be written in terms
of the previously computed bits as

ŝij =

k1∑
k=1

hxikh
y
jk +

k2∑
k=k1+1

hxikh
y
jk (1)

where the new hash bits hxik, h
y
jk of (k2 − k1) length captures the difference in simi-

larity between ŝij and sij that has not already been captured by the k1 length hash bits
hxik, h

y
jk. [20] utilizes a similar formulation to learn the hash codes, but does not use

any incremental updates.
Another such formulation can be found in [33], [4], [38] which deals with the triplet

ranking loss whose general form is

L
(
hxi∗, h

y
j∗, h

y
k∗
)
= max

(
0, 1−

(
‖hxi∗ − h

y
k∗‖

2
2 − ‖hxi∗ − h

y
j∗‖

2
2

))
(2)

where, {hxi∗, h
y
j∗, h

y
k∗} are the bit representations of three data samples. The squared

norm is the sum of the square of the elements [9] (||x||22 =
∑
i x

2
i ) and hence the above

objective can be expressed as a summation over the individual bits. The work in [38]
utilizes this fact to design fast and efficient hash learning protocols for the single modal
applications.

In this work, we build upon the first kind of formulation and show how it can be
modified for incremental hashing. The second formulation is also suitable for a similar
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approach. The formulations in [31], [25] can also be used to learn the hash functions
sequentially. However, as the two stages are coupled together, the form of the hash func-
tion is limited to a linear transformation. Our two stage method removes this restriction
and enables us to efficiently use DNN to learn better functions for hash bit representa-
tions. Also using DNN to learn Stage 2 allows us to re-use parts of the network to learn
hash functions incrementally with considerable savings in time and computation.

3.1 Stage 1: Learning the Hash Code

We will first briefly describe the formulation in [20] and then extend it for our problem.
During training, the binary representations of the ith data of x modality and jth data of
y modality are computed in such a way that its similarity (hxi∗

Thyj∗) is consistent with
the semantic affinity given by their associated labels (sij =< Litr, L

j
tr >). < ., . >

denotes the normalized inner product operation [15][20]. The two hash codes Hx and
Hy (of k1 dimension) are computed using the affinity matrix S by solving the following
least square formulation [20], [27] which encodes all possible relations between the data
using the initial labels Ltr

min
Hx,Hy

‖k1S −HxHyT ‖2F

s.t. Hx ∈ {−1, 1}N×k1 , Hy ∈ {−1, 1}N×k1 .
(3)

The above objective deals with discrete variables and is difficult to solve. Thus the dis-
crete constraint is relaxed and it is then solved using an alternating minimization tech-
nique [27], [16], [20]. For each variable update of Hx and Hy , we use the projected
gradient descent approach [22]. Denoting the above objective as a function f with re-
spect to a single variable, say U , where U = {Hx orHy}, with the other variable fixed,
we need to solve the following

min
U

f(U)

s.t. U ∈ [−1, 1]N×k1 .
(4)

Following [22], we compute ∂f(U)
∂U and then update U as Proj[−1,1]

(
U − η ∂f(U)

∂U

)
,

where η is the step size. These steps are repeated for both Hx, Hy until convergence.

Computing the additional hash bits: Assume that we have already learned the hash
bit representation of the training data as Hx, Hy of k1 bit length. Now, in addition to
the original tags Ltr ∈ RN×a, we have access to an additional set of tags, and let the
increased set be denoted as L̂tr ∈ RN×â (a ⊂ â). One can always reconstruct the new
affinity as ŝij =< L̂itr, L̂

j
tr > and relearn the hash bit representation Ĥx, Ĥy from

scratch. Instead, we propose to reuse the already learned hash bits Hx, Hy of k1 bits
and extend it to Ĥx, Ĥy of k2 bits to incorporate the additional semantic information.
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This way, we can utilize the already learned bits. The additional bits are computed as:

min
Ĥx,Ĥy

‖k2Ŝ − ĤxĤy
T
‖2F

= min
HX ,HY

‖k2Ŝ − (HxHyT +HxHyT )‖2F

= min
Hx,Hy

‖D −HxHyT ‖2F

(5)

Here, Hx and Hy are the additional hash bits of length (k2 − k1) to be learnt for the x
and y modalities. Since D = k2Ŝ − HxHyT , we see that the additional hash bits are
trying to learn the semantic information not captured by the original bit representation.
The above objective (5) can be solved using a similar strategy as in (3).

A sub-problem of the one addressed above is when we want to increase the hash
bit length to better capture the relationship between the data for better retrieval, even
though the tags remain unchanged. This scenario is relevant since the retrieval per-
formance of standard state-of-the-art hashing techniques [11], [20] increases with the
increase in hash bits. We can use the same formulation as above to learn the additional
bits and reuse the already learned k1 bits. For this, we use (5) by replacing Ŝ with S
since the tags remain the same.

3.2 Stage 2: Learning the Hash Functions

We first describe how to learn two hash functions Fx : x → Hx and Fy : y → Hy to
generate the hash codes for the x and y modalities. Next, we will discuss how to learn
the hash functions for the extended bits. Here, we consider the two modalities as image
and text, but the proposed approach is equally applicable for other modalities.

Owing to the success of deep learning approaches for learning data representations,
we formulate a multilayer neural network based approach to learn the hash functions.
The proposed setup (Figure 3) consists of two networks, corresponding to image and
text. For the image modality, we use the AlexNet [12] architecture which has convolu-
tional (conv) layers followed by fully connected (fc) layers and replace the last fc layer
with a new one of k1 dimensions. For the text modality, the text data represented using
bag-of-words is passed through a series of fc layers to learn the hash function, with the
final layer being of k1 dimensions. Additionally, we define a unification network which
takes as input the concatenated output of the image and text networks and generates
a unified hash code. The output of each of these three networks is passed through a
tanh activation to bring the values between −1 and 1 which are finally quantized using
bit-wise sign operation to get the final hash codes.

We consider each part of the network as independent modules or blocks with a
specific function. For the image network, the initial part of the network up to the penul-
timate fc layer is defined as the Feature Block (FBx) which generates feature vector
specific to the input image. This feature vector is used by the last fc layer termed as
Hashing Block (HBx) to learn semantically rich hash codes. We define the blocks in
the above manner so that more hashing blocks can be added after the feature block to
increase the number of hash bits, which enables us to train only a part of the network
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Fig. 3. The basic network architecture to learn the hash function.

Fig. 4. The network architecture to learn the extended hash functions using the new network
blocks (marked in green). The previously reused network blocks (marked in blue and yellow) are
not trained again.

while obtaining better hash representations. The text domain network can be considered
to have similar modules with the initial fc layers before the last two fc layers constitut-
ing the Feature Block (FBy) and the last two fc layers making up the Hashing Block
(HBy).

We designate the functions approximated by FB and HB for the two modalities
as {f tFB , f tHB}, with t = {x, y}. The functions are defined as f tFB : t → ztFB and
f tHB : ztFB → ztHB . Hence, Ft can be written as Ft = f tHB(f

t
FB(.)). We concatenate

the output (before the tanh layer) from the two networks fxHB , f
y
HB to form the con-

catenated vector zuHB which is then passed through the Unification Block (UB) to get
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the unified hash bits. We employ mean squared error (MSE) loss at the output of the
two networks to learn the hash bits Hx and Hy . MSE is also used to get the unified
hash code (choosing either Hx or Hy was found to be equally good). The overall loss
function is L = Lx + Ly + Lu with each loss Lt, (t ∈ {x, y, u}) defined as

Lt =
N∑
i=1

k1∑
j=1

(
ztHB,ij − htij

)2
+ λ

N∑
i=1

k1∑
j=1

(
log cosh(

∣∣ztHB,ij∣∣− 1)
)

(6)

The second term helps to reduce the quantization loss [37], with λ as the weight param-
eter. The quantization loss is essential because the variable htij (hash bits from the first
stage) is discrete, whereas ztHB,ij is the output after passing through the tanh layer.

Learning the additional hash functions: Now, given the extended hash codes of
length k2(k2 > k1) bits, we show how the network described above can be seam-
lessly adapted to the new set of bits. In Stage 1, we keep the initially learned hash
codes Hx, Hy of length k1 fixed, and only learn the additional bits Hx, Hy of length
(k2−k1). Thus in Stage 2, we only introduce new hashing blocks and unification block
{HBnx , HBny , UBn} corresponding to the new (k2 − k1) bits, which have the same
architecture as {HBx, HBy, UB} respectively. The original FB, HB and UB blocks
for the initial k1 bits need not be retrained. This is illustrated in Figure 4. The new loss
is Ln = Lnx + Lny + Lnu with each loss Lnt , (t ∈ {x, y, u}) defined as

Lnt =

N∑
i=1

k2∑
j=k1+1

(
ztHBn,ij − htij

)2
+ λ

N∑
i=1

k2∑
j=k1+1

(
log cosh(

∣∣∣ztHBn,ij

∣∣∣− 1)
)

(7)

Since we do not retrain the original blocks FBx, FBy , we fix { ∂Ln

∂WFBx
= 0, ∂Ln

∂WFBy
=

0} (W denotes the weights and biases of the network blocks) so as not to update their
network parameters, which helps to significantly reduce the training time.

There are two fc layers in theHBy block for the text network as it is not pre-trained.
The unification block needs to be repeated as the function to learn the additional bits
have to be trained from scratch.

For a test query, hash codes are generated by passing it through the network and
using sign() for quantization. For a paired data sample, the unified hash representation
is generated by passing it further through the unification block with subsequent quanti-
zation.

This work has differences from the recent state-of-the-art technique in [20] - (1)
here, we are integrating a deep based architecture to learn the hash functions which
performs better than the non-deep based ones, (2) the unification scheme outperforms
the unification scheme in [20] and (3) this algorithm can learn the bits in an incremental
fashion. This incremental method can also be applied for unimodal hashing purpose
though here we have specifically focussed on cross-modal applications.
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4 Experiments

4.1 Datasets and Evaluation Protocol

The three datasets we have used for our evaluation are MIRFLICKR-25K [10], IAPR
TC-12 [6] and NUS-WIDE [3]. We follow the standard experimental protocol as in
[11]. MIRFLICKR-25K [10] has 25, 000 images accumulated from Flickr website with
each described by textual tags, of which only those pairs with at-least 20 tags are con-
sidered. We use Convolutional Neural Network (CNN) features for images and 1386-
dimensional bag-of-words (BOW) feature vectors [11] for the text. Each pair has mul-
tiple annotations out of 24 possible unique labels. The IAPR TC-12 dataset [6] has
20, 000 image-text pairs with annotation spread over 255 labels. Following the same
protocol as in [11], we use the entire dataset in IAPR TC-12 for our experiments. CNN
features and 2912-dimensional BOW features are used for image and text data respec-
tively [11]. NUS-WIDE [3] has 260, 648 images designated with multiple labels across
81 categories. As in [11], we consider only those pairs that belong to the 21 most fre-
quent concepts to form a reduced dataset of 195, 834 image-text pairs for our exper-
iments. For textual data, we use a 1000-dimensional BOW representation, while for
images we use CNN features. All the features are taken from the work in [11].

The retrieval performance is measured using Mean Average Precision (MAP). It is
computed as the mean of the Average Precision (AP) of all the queries where AP (q) =∑R

r=1 Pq(r)δ(r)∑R
r=1 δ(r)

.R is the number of retrieved items and Pq(r) is the precision at position

r for query q. δ(r) is defined to be 1 if the rth retrieved item shares at least one label
with the label of the query q, else it is set to 0.

4.2 Baseline and Implementation Details

We compare the proposed approach with the state-of-the-art cross-modal supervised
hashing methods like SePH [15], STMH [24], SCM [31], GSPH [20], DCMH [11],
PRDH [30] and some unsupervised methods like CMFH [5] and CCA [8]. We report the
results of the above baseline algorithms from the work in [11] whenever available. We
report the results of GSPH and SePH using the unification strategy for fair comparison.
We use the open source deep learning toolbox PyTorch [21] on a NVIDIA Titan X GPU
card to perform our evaluations. For the text based network, the FB and HB consist of
one and two fc layers respectively and the UB consists of three fc layers. The hidden
layer is taken to be 500-dimensional except for the NUS-WIDE dataset, where it is
chosen as 1500. The learning rate for training the network initially and re-training it for
the extended bits is set to be lr = 1e−3 and lr = 1e−4. It took around 10−30 iterations
for our network to converge. Now, we describe the results obtained by our algorithm.

4.3 Results

Results for Protocol I (P-I) P-I is the standard cross-modal evaluation protocol as
in [11]. We randomly sample 2000 examples to form the query set and the remaining
form the retrieval set for MIRFLICKR-25K [10] and IAPR TC-12 [6] datasets. For
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NUS-WIDE [3], randomly chosen 2100 examples form the query set and the remain-
ing examples form the retrieval set. The training data is formed by sampling from the
retrieval set itself as in [11]. We use {10000, 10000, 10500} examples as the training
set for MIRFLICKR-25K, IAPR TC-12, and NUS-WIDE datasets respectively. As in
[11], [15], [20], a retrieval is considered correct if it shares at least one common label
with the query. The MAP results for GrowBit and comparison with the state-of-the-art
on the three datasets is given in Table 1. I → T denotes that image query is used to
retrieve text data and vice-versa. We report the comparisons with PRDH [30] in Table
1 by following the same protocol as in [30] (results marked with *). We observe that
GrowBit outperforms the other approaches for all the three datasets. The performance of
our approach increases monotonically with an increase in the number of bits. Interest-
ingly, it also outperforms DCMH [11] and PRDH [30] though ours is not an end-to-end
deep learning approach. Figure 5 shows some text-image retrieval (top-5) results for the
MirFlickr [10] dataset.

Table 1. MAP for MIRFLICKR-25K, IAPR TC-12 and NUS-WIDE datasets for P-I.

Task Method
MIRFLICKR-25K IAPR TC-12 NUS-WIDE

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

I → T

CCA 0.5719 0.5693 0.5672 0.3422 0.3361 0.3300 0.3604 0.3485 0.3390
CMFH 0.6377 0.6418 0.6451 0.4189 0.4234 0.4251 0.4900 0.5053 0.5097
SCM 0.6851 0.6921 0.7003 0.3692 0.3666 0.3802 0.5409 0.5485 0.5553

STMH 0.6132 0.6219 0.6274 0.3775 0.4002 0.4130 0.4710 0.4864 0.4942
SePH 0.7123 0.7194 0.7232 0.4442 0.4563 0.4639 0.6037 0.6136 0.6211

DCMH 0.7410 0.7465 0.7485 0.4526 0.4732 0.4844 0.5903 0.6031 0.6093
GSPH 0.7706 0.7866 0.7984 0.4799 0.5128 0.5372 0.7074 0.7258 0.7381

GrowBit 0.7951 0.8053 0.8232 0.4987 0.5371 0.5621 0.7069 0.7283 0.7408
PRDH* 0.7126 0.7128 0.7201 - - - 0.6348 0.6529 0.6506

GrowBit* 0.7675 0.7898 0.8008 - - - 0.7275 0.7491 0.7584

T → I

CCA 0.5742 0.5713 0.5691 0.3493 0.3438 0.3378 0.3614 0.3494 0.3395
CMFH 0.6365 0.6399 0.6429 0.4168 0.4212 0.4277 0.5031 0.5187 0.5225
SCM 0.6939 0.7012 0.7060 0.3453 0.3410 0.3470 0.5344 0.5412 0.5484

STMH 0.6074 0.6153 0.6217 0.3687 0.3897 0.4044 0.4471 0.4677 0.4780
SePH 0.7216 0.7261 0.7319 0.4423 0.4562 0.4648 0.5983 0.6025 0.6109

DCMH 0.7827 0.7900 0.7932 0.5185 0.5378 0.5468 0.6389 0.6511 0.6571
GSPH 0.7388 0.7522 0.7653 0.4881 0.5260 0.5523 0.6561 0.6716 0.6860

GrowBit 0.7778 0.7919 0.7994 0.5205 0.5614 0.5828 0.6595 0.6864 0.6945
PRDH* 0.7467 0.7540 0.7505 - - - 0.6808 0.6961 0.6943

GrowBit* 0.7496 0.7728 0.7793 - - - 0.6893 0.7060 0.7082

Results for Protocol II (P-II) In P-II, we want to increase the length of hash bits to
get better retrieval performance without changing the number of tags/labels. The results
for P-II for the three datasets are given in Table 2. Here 16→ 64 denotes that the initial
hash code length is 16 and it is increased to 64 using GrowBit. Comparing the results
with that in Table 1, we observe that the improved performance obtained by increasing
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Fig. 5. Few text-image retrieval (top-5) results for the MirFlickr dataset [10] under P-I protocol.

Table 2. MAP for the three datasets for P-II and P-III.

Protocol Dataset
I → T T → I

16→ 32 16→ 64 32→ 64 16→ 32 16→ 64 32→ 64

P-II
MIRFLICKR-25K 0.8108 0.8180 0.8253 0.7970 0.7983 0.8085

IAPR TC-12 0.5325 0.5449 0.5599 0.5550 0.5610 0.5820
NUS-WIDE 0.7248 0.7394 0.7413 0.6860 0.6884 0.7001

P-III
MIRFLICKR-25K 0.7907 0.8094 0.8010 0.7700 0.7777 0.7733

IAPR TC-12 0.5143 0.5574 0.5525 0.5310 0.5647 0.5635
NUS-WIDE 0.6933 0.7188 0.7143 0.6426 0.6540 0.6629

the number of bits eg. 16 → 64 and 32 → 64 does not significantly deviate from
the expected result if we would have learned all the 64 hash bits from scratch. This
is observed across both the scenarios I → T and T → I and across all the datasets.
Figure 6 shows some T → I retrieval (top-5) results for the MirFlickr [10] dataset. We
observe that using extended hash bits (16 → 64), there is a noticeable improvement in
the images that are retrieved corresponding to the text query.

Results for Protocol III (P-III) In this third and most challenging protocol, the number
of tags increases which needs to be accounted for by the new bits. Here, we initially
learn the hash codes using 50% of the tags and use the extended hash bits to learn
the full semantic relations using all the tags. The 50% split is generated randomly and
we repeat our experiments three times and report the average. The results for the three
datasets for P-III are shown in Table 2. We observe that (1) the performance of the
incremented hash bits as compared to Table 1 is slightly lower, and (2) the performance
drop in I → T is smaller as compared to that in T → I .

4.4 Analysis of the Proposed Approach

Effect of Unification: Figure 7 shows the retrieval performance (MAP) on the three
datasets with and without unification for hash bit length of 16, 32 and 64 for Protocol I.
We observe that the unified bits gives a significant boost in the performance. Thus the
complementary information from both the modalities results in significant improvement
in the retrieval performance for both I → T and T → I scenarios.
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Fig. 6. Few text-image retrieval (top-5) results for the MirFlickr [10] dataset under P-II protocol.
We observe that the extended hash bits (16 → 64) helps to better capture the semantic relation
and shows a noticeable improvement in the retrieved items.

Fig. 7. MAP (y-axis) for the three datasets with and without unification for P-I.

Effect of number of hash bits: We observe from Figure 8 (left) that the retrieval
performance (MAP) improves monotonically with increase in the number of bits (from
16 to 128) for both the datasets MIRFLICKR-25K and IAPR TC-12.

Effect of better network architecture: Here we study the effects of using networks
with better representation capabilities on the retrieval performance. The I → T results
for the MIRFLICKR-25K dataset with different architectures [21] for the image do-
main is shown in Figure 8 (right). We observe that better networks improve the retrieval
performance for both 16 and 32 bits. Since the network for the text data remains un-
changed, the T → I results do not improve much, which can potentially be improved
with a better network for the text modality.

Savings in Computation: Now we show the computation savings in both Stage 1
and Stage 2 of our algorithm when we learn extended hash codes. Table 3 shows the
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Fig. 8. (Left) MAP with increasing number of bits for both I → T and T → I scenarios under
P-I protocol. (Right) MAP performance on MIRFLICKR-25K using different networks.

computation required for the MIRFLICKR-25K dataset when we extend the hash bits
from k1 = 16 to k2 = {32, 64} for a training data size ofN = 10, 000. We observe that
most of the savings is obtained when the number of fc layers in the HB block is reduced.
The relative number of parameters saved using GrowBit is also provided. Considerable
savings will also be there during testing as k1 bits for the test data can be reused.

Table 3. Comparison of MAP obtained for P-I and P-II. The relative gain in performance (%)
obtained (k1 → k2 vs k1) is shown. The parameters (in millions for both Stages s1, s2) required
for training 10K data of MIRFLICKR-25K is also noted with relative savings

(
1− #(k1→k2)

#k2

)
given in %.

I → T (T → I)
16 bits 32 bits 64 bits

P-I 0.7951 (0.778) 0.805 (0.792) 0.823 (0.799)
P-II - 0.8108 (0.797) 16→32 0.818 (0.7983) 16→64

Gain - 1.975% (2.469%) 2.880% (2.636%)
#k1 0.32s1 + 59.50s2 0.64s1+59.65s2 1.28s1+59.80s2

#(k1 → k2) - (0.32s1 + 0.59s2)16→32 (0.96s1 + 0.76s2)16→64

Parameters saved (in %) - 50.0%s1 + 98.9%s2 25.0%s1 + 98.7%s2

5 Summary

In this work, we have proposed a novel incremental hashing approach GrowBit for
cross-modal retrieval which can incrementally learn the hash codes for better represen-
tation of the data, especially when the number of tags increases. The novel hash code
unification block gives significant performance boost by using the complementary in-
formation of the two modalities effectively. To the best of our knowledge, this is the first
work which addresses this problem. Extensive evaluation on three cross-modal datasets
under different protocols justifies the usefulness of the proposed approach.
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